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The characteristic Galerkin finite element method for the discrete Boltzmann
equation is presented to simulate fluid flows in complex geometries. The inher-
ent geometric flexibility of the finite element method permits the easy use of simple
Cartesian variables on unstructured meshes and the mesh clustering near large gra-
dients. The characteristic Galerkin procedure with appropriate boundary condition
results in accurate solutions with little numerical diffusion. Several test cases are
conducted, including unsteady Couette flows, lid-driven cavity flows, and steady
flow past a circular cylinder on unstructured meshes. The numerical results are in
good agreement with previous analytical (if applicable), numerical, and experimental
results. © 2001 Academic Press
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1. INTRODUCTION

The lattice Boltzmann equation (LBE) method has been demonstrated to be an effec
tool in simulating flow through porous media, multiphase flow, and interfacial flow phe
nomena [1]. The conventional LBE method, however, requires regular structured mes
Since He and Luo [2, 3] and Abe [4] demonstrated that the LBE is a discretized form of t
continuous Boltzmann equation and the discretization of physical space is not coupled \
the discretization of momentum space, several efforts have been made to address the
concerning the treatment of curved boundaries and the control of grid density at desir
regions. Significant progress has been achieved in recent years.

Filippova and Hinel [5] developed a second-order accurate boundary condition for t
LBE method to treat a curved boundary on the regular structured mestetie[6] im-
proved this scheme and further extended it to three dimensions [é}.&1¢8—10] proposed
an interpolation-supplemented LBE model (ISLBE) to simulate a two-dimensional chan!
flow with sudden expansion on a nonuniform mesh, and steady and unsteady flows p:
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circular cylinder in a curvilinear coordinate system. This method adds a new interpolat
step between the streaming and relaxation steps in the conventional LBE method and re
the locality property of the two steps. Cabal. [11] indicated that the LBE method is a

special finite-difference discretization of the kinetic equation of the discrete velocity dist
bution function, and thus the application of nonuniform meshes and semiimplicit collisi
scheme to the LBE is possible. On this basis, Mei and Shyy [12] developed a LBE metl
in a generalized body-fitted coordinate system, solving fluid flow problems in compl
geometries. Sucat al. [13] and Xi et al. [14, 15] proposed finite-volume LBE methods
for simulation of fluid flows in complex geometries.

In order to solve the LBE in complex geometries while preserving the advantages of
conventional LBE method such as data locality and little numerical diffusion, we present
characteristic Galerkin finite element method [16] for solving the discrete Boltzmann eq
tion (CGDBE). For scalar variables with constant source terms, the characteristic Gale
method, which utilizes the optimal approximation along the characteristics, is identical
the Taylor—Galerkin method [17, 18]. The Taylor—-Galerkin method is a generalization
the Lax—Wendroff method [19] in the context of finite elements.

Since the inherent geometric flexibility of the finite element method permits the easy
of simple Cartesian variables on unstructured mesh for arbitrary complex geometries [
there is no need for global mapping and global transformation of equations to covari
(or contravariant) components. Since the spatial domain is discretized at the element |
and interelemental communications are required only when the discretized matrix is sol
by the conjugate-gradient type iterative solver, the finite element method can exploit
parallelism in a straightforward manner. In addition, this matrix is well-conditioned and tl
conjugate-gradient algorithm is favorable to parallelism.

If the original differential operator is self-adjoint (symmetric), the Galerkin spatial di
cretization of the operator is also self-adjoint. This feature makes the Galerkin discretiza
of the discrete Boltzmann equation along the characteristics optimal and helps to rec
numerical error. It is noteworthy that Matsushita [21] applied the standard Galerkin mett
to the one-dimensional continuous Boltzmann equation, but did not utilize the feature
self-adjointness.

This paper is organized as follows. In Section 2, the numerical formulation of the CGDE
the boundary condition, and the accuracy and stability analyses are described. The pre
CGDBE method is applied to solve three test cases: unsteady Couette flows, lid-dri
cavity flows, and steady flows past a circular cylinder. The numerical results are presel
in Section 3 and are compared with previous numerical results. Concluding remarks
given in Section 4.

2. NUMERICAL FORMULATIONS

In this section we present the governing equations, the numerical formulations of
CGDBE, the boundary condition, and the accuracy and stability analyses.

2.1. Governing Equation
The continuous Boltzmann equation with the Bhatnagar—Gross—Krook collision opere
[22] reads

of 1
— 4+ & VE=—-Z(f-1fO 1
sr eV A( ) (1)
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FIG.1. Two-dimensional square lattice model with a length séale

wheref is the single-particle distribution functioéjs the microscopic velocityy f is the
gradient of the functiorf, A is the relaxation time due to collision, arié¢® is the Maxwell—
Boltzmann distribution function. If a nine-velocity LBE model on a square lattice is use
and the Boltzmann—Maxwellian distributidi® is expanded as a Taylor series upto (1),

we obtain the discrete Boltzmann equation [23]

of 1

= Vi, =—=(f, — £59), 2

at + ea }\.( o ) ( )
wherea =0, 1, ..., 8. The discrete velocitg, is expressed as (refer to Fig. 1 for the

direction represented by the subscript

e, = ¢ (cosh,, sinb,), 0y = (@ — /4, a=12357 3)
V2(costy, sinb,), Oy = (@ — /4, o =24,6,8.

The equilibrium distribution functiorf 29 is defined as

ffqzwa,o[1+3(ea-u)+Z(ea~u)2—E(U-U) ; (4)

with the weightavg =4/9, w1 = w3z = ws = w7 =1/9, andw,; = ws = wg = wg=1/36 [2].
The macroscopic densigyand velocity vectou are related to the distribution function by

8
Z th =P,
a=0

The pressure can be calculated fram= c2p with the speed of sount, = 1/+/3 and the
viscosity of the fluid is» = Ac2.

M

e, fo = pu. 5)

Il
i

o
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2.2. Characteristic Galerkin Approximation

In what follows, the characteristic Galerkin procedure by Zienkiewicz and Codina [1
will be applied to the discrete Boltzmann equation Eq. (2). X@ter, trer; t) denote the
trajectory (or characteristic) of the particle that passes the spatiabpgiat timet = ty,

S0 thatX (Xret, tref; tref) = Xref. HEre€X(ef iS @n arbitrary point on the trajectory of the particle
between time,, andt,, ;. Thus, the left-hand side of Eq. (2) can be expressed as

af,
o (W%'V@
ref

wherexqer andtrer in X(Xret, trer; t) @are omitted for brevity. It is understood that the convective
term disappears along the characteristics. Sineex; att = tier, EQ. (2) may be recast as

: (6)

X=Xref, t=Tref

gf X(t),t
gp e X(®, 1)

d 1
d. I T _ ceqry
at fo (D), ) = . [fe XD, D) = F59XWD), D], (7)

which becomes self-adjoint in space and the standard Galerkin spatial approximation o
equation is optimal.

Assume thatf, at timet, is known and we want to compute it at timyg ;. The dis-
cretization of Eq. (7) in time yields

o - At - o
fo(X(tn11), thy) — fo(X(tn), tn) = —97 [fa (X(tnt1), thr) — FL9K(tns1), tn+1)]

At o o
-1- Q)T[ftx(x(tn)’ th) — fL9K(tn), )], (8)

wheret, 1 = t, + At, X(th41) = X(tn) + Ate, andéd € [0, 1]. To obtain a second-order
approximation one must chooge= 1/2.

Equation (8) can be solved very efficiently on the regular, structured mesh that coinci
with the underlying lattice. For instance, with= 0 Eq. (8) reduces to the conventional
lattice Boltzmann equation

o o At eq/
fo (X(th11), th1) — fa(X(th), t) = _T[fot(x(tn), th) — f79(X(t), tn)] . 9)

To maintain second-order accuracy, one must choesex /At — 0.5)c2 At to account for
the leading order truncation error in the Chapman—Enskog expansion. If we are to s
Eq. (8) on the unstructured mesh in complex geometries, however, we need to make u:
the local approximation foff, (X(t,), tn) with f,(X.et, tn) at the expense of computational
efficiency. Althoughx.es is completely arbitrary betweeX(t,) and X(t,+1), we choose
Xret = X(th41) Since it introduces some additional terms that enhance the stability of t
numerical scheme [16]. From the geometrical point of view, we move backward relat
to the particle followed. A simple one-dimensional, characteristic Galerkin procedure
illustrated in Fig. 2.

)?(tn) = )N((tn-&-l) — Atey = Xpet — AlEy, (10)
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FIG. 2. A simple one-dimensional characteristic Galerkin procedure.

and therefore

fa (i(tﬂ)v tn) = fa (Xret — Aley, tn)
n At2 P n

9
0 — At @ 4= — @ 4 O(AtY), 11
o €ur %, + 2 eozreozsaxS %, + O( ) (12)

wheref) = f,(Xref, th), €& = (€41, €&2), and summation is applied to the repeated indice
r ands. An expression foif S9(X(t), tn) is obtained in the same manner. Using Eq. (11) tc
approximate the terms in Eq. (8) with= 1/2 and neglecting higher order terms give

afn 1 1/2
fn+l—fn=—At Ta 7fa_feqn+/
2 = st e (- 9
At? 9 afn 1 n
—e— @ 4 Z(f, — fe o(Atd). 12
zeasaxi raXr+k( a)}jt (A% (12)

Although %2 in Eq. (12) can easily be approximated (e.g., by the Crank—Nicolsc
method), the equilibrium distribution functioff%"+/2 does not permit such an easy treat-
ment. There are several options to approximgfté"*1/2. One can approximat&een+1/2
by f24" and f+%/2 by £ in spite of the severe stabilily limit caused by sniallf f+1/2
is approximated byf "1 and fe4+1 py fe4n the stability limit may be overcome but a
noticeable phase lag is observed. Mei and Shyy [12] proposed an extrapolation method
usesf’ 9 at timet, andt,_;. As they pointed out, however, the extrapolation method fo
fo9is subject to numerical instability. In order to prevent the instability introduced by tf
extrapolation and circumvent the stability limit imposed by the relaxation term, we prese
the second-order accurate predictor-corrector method.

In the predictor step, we approximaf@*/2 by f+1 and f24"+%/2 py 24" The gain
is that the stability of the CGDBE is now mainly up to the convection stability limit knowt
as the CFL condition because of the implicit treatmenfofn the relaxation term. The
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loss is thatf,, after a predictor step suffers a phase lag so that it might not lie attfime
but somewhere between timgsandt,, 1. This f,, however, is found to serve as a good
approximation tof '"+1/2,

The predictor-corrector method can be expressed as follows.

e Predictor Step

oy 1o ream], AU
8Xr+)x(fa L )}4_ s

fo— "= —At ey 5

At2 ) afn 1 n
— @ 4 Z(f, — feN)"|.
axs[e‘”ax,’Lx( “)}

(13)

Here f, is taken as an approximation @f+1/2 which represents some average value
between time$, andt,, ;. Likewise, f&4"+%/2 can be approximated as

N 9 3
f(fq,n+1/2 ~ 89 = w,p {14_ 3(e, - 0) + E(e”‘ L0)2 — 5(Cl . 0)], (14)

whereg'= 38 _ f, andgl = 32 _ e, fa.

e Corrector Step

gl f = _%(f;q’“ _ feay, (15)
Numerical experiments show that this predictor-corrector method does not suffer from
phase lag which plagues Eq. (13).

We now apply the Galerkin finite element method to Eq. (13). Suppose that the dom
Q is discretized into an appropriate collection of finite elements, which are bilinear quac
lateral or triangular elements in the present study. The weak form of Eq. (13) is deri\
by multiplying it with the weighting function and integrating over the spatial domain ¢
the problem. LetH denote the Sobolev space of vector functions defined on the spat
domainQ. We then perform integration by parts on the terms introduced by the characte
tic Galerkin procedure and apply the divergence theorem. Since Eq. (13) is derived fro
self-adjoint problem in space, the spatial discretization by the Galerkin method is optin

The Galerkin approximation is to find an approximate solufigh of the following form
in a finite dimensional subspa¢#” of the spaceH *.

£ =NTf,, (16)

whereNT = {N, N2, ..., N"} is a(1 x ne) vector of interpolation functions of the el-
ementQ®, the superscript-{" denotes the transpose operation, apds the number of
nodal points in an elemertt, is a (he x 1) vector of nodal particle distribution functions.
Likewise, f2%M —= NTf&d for the equilibrium function.

By applying the Galerkin method to Eq. (13) and expressing Eg. (15) in vector form, o
obtains

e Predictor Step

M (F, 17 = _m{cafg £ IM (197 + ALDLE + Qu (17— 197)] } 17)
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e Corrector Step

~ At ~
ot =T = ——(fe% — 19), (18)

where @ x ng) matricesM, C,, D,, andQ,, are defined as

M =/ NNT d<2, (19)
aNT
Co= [ N de, 20
[ NS (20)
1 32NT
D,=—=/ N de, 21
> /.. Cur sk (21)
1 aNT
w=—-— [ N dQ. 22
Q 21 Jo. NS (22)

D, andQ, are introduced by the discretization along the characteristics and help to stabi
Eq. (17). In general, one integrates Eq. (21) by parts and applies the divergence theore
Gauss to obtain

1 AN ANT aNT
Dy = - — —dQ - ¢ Nn ——dr), 23
M </g axseasear ™ é s€s€ur % > (23)

wherel ¢ denotes the surface of elements agare the components of the outward vector
normal toT". The second term on the right-hand side is the surface integral and canc
out in the interior of the domaif. It is noteworthy that the first term on the right-hand
side of Eq. (23) multiplied byAt? is identical in form to the balancing tensor diffusivity
(BTD) [20] and is similar to the streamline upwind term [24]. The BTD is to compensa
the truncation error of the pure advection equation discretized by the forward Euler mett
and the streamline upwind term is to add optimal diffusion to the governing equation
the streamline direction. Exclusion of the term associated @ittirom Eq. (17) tends to
result in excessive numerical diffusion, and thus lower Reynolds number flows. With nc
of these terms, the method is likely to be unstable.

2.3. Boundary Condition

The surface integrals in Eq. (23) in the interior of the domain cancel out and those
the domain boundary remain to be determined by boundary conditions. For the esse
boundary condition, Egs. (17) and (18) at the boundary nodes are dropped and replace
the prescribed, values. If the boundary condition is natural, the normal flux associated wi
the surface integral in Eq. (23) is specified. For the CGDBE and LBE methods, howe\
neither essential or natural boundary conditions seem to be appropriate because us
boundary conditions are given for macroscopic variables, such as fluid velocities, press
or their gradients, but not for particle distribution functions.

Several attempts to reconstruct boundgfy* from the constraints in Eq. (5) have been
made [25-28]. Nevertheless, it is not easy to generalize these boundary conditions for
use of complex geometries and three-dimensional problems. The widely used bounce-|
scheme and equilibrium boundary condition are easy to implement, but are of lower or
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accuracy [29]. Cheat al.[30] and Mei and Shyy [12] took an alternative approach that ca
preserve the overall order of accuracy of the LBE methods. In the extrapolation schem
Chenet al.[30], the values off ] at the fictitious nodes adjacent to the boundary nodes a
obtained by linear extrapolation prior to the streaming step. In the finite difference-ba:
LBE method in body-fitted coordinates, Mei and Shyy [12] used the one-sided differer
scheme to approximate the gradientsf@fat the boundary nodes and demonstrated the
the extrapolation scheme leads to the one-sided difference at the boundary nodes. In
schemes, macroscopic boundary conditions are incorporated thffggimd the LBES at
the boundary nodes are solved figtt! at the domain boundary.

This approach is akin to the “no” boundary condition that is used as an outflow bound
condition in finite element methods [20, 30-34]. The idea of “no” boundary condition
simply not to perform integration by parts on the equations associated with the bounc
nodes because “no” information on variables at titjg is used. Thus construction of
Eq. (17) at the boundary nodes only involves the elements adjacent to the boundary n
and f" without any assumptions off’"** and its gradient, similar to the above extrapola-
tion scheme and one-sided difference approximation. But a major difference between
original “no” boundary condition and its application to the CGDBE is that the latter permi
macroscopic boundary conditions to be reflected throtfhwhile mesoscopic boundary
conditions for f" 1 remain unspecified.

Numerical experiments by [12, 30] and those to be presented later show that the
proach, which treatf"?! at the domain boundary as part of the solution and impose
physical boundary conditions throudi§?, can be applied to stationary/moving walls and
inlet/outlet boundaries. The physical Neumann boundary condition can also be implemel
by assigning the updated values of macroscopic variables at the interior nodes next tc
domain boundary to the boundary nodes in the direction that the Neumann conditio
applied. Interpolation is required if the grid lines near the domain boundary are not pare
to the direction of the Neumann condition.

2.4. Accuracy and Stability

As shown in Section 2.2, the present CGDBE scheme is of second-order accurac
time. However, the spatial accuracy depends on the shape of interpolation functions. F
piecewise linear shape function, it can be shown that transient solutions for the pure ad
tion equation on uniform meshes enjoy fourth-order spatial accuracy and zero numet
diffusion (see Appendix). The relaxation term has no effect on the spatial accuracy.

Equation (17) is only conditionally stable because the convection term is treated exp
itly. The stability condition for pure convection problems with linear elements is given
[16, 35]

h
Ateony < % , (24)

wheree is the discrete velocity in the characteristic direction &rid the element size in
that direction.

3. RESULTS

In this section we present several test cases and compare with previous analytical
numerical results. Unsteady Couette flow, lid-driven cavity flow, and steady flow pas
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circular cylinder will be examined. For all cases, the boundary condition is imposed throu
f 29 with the prescribed velocity as described in Section 2.3.

3.1. Unsteady Couette Flow

In order to evaluate the temporal accuracy of the CGDBE, we examine unsteady Cou
flow. The top plate moves at a constant velocity- (U, 0) and the bottom one is kept
stationary. A periodic boundary condition is applied in #éirection. Mach number Ma
is 0.1 and the velocity of the top plate is calculated by the reldtioa c; Ma. The fluid
densityp is 1.0 and the Reynolds number E;eUTL is 10, wherelL is the channel width.
The Navier—Stokes equation for this simple two-dimensional parallel flow reduces to

au(y, t) _ vazu(y, t)

25
ot ay? (25)
The analytical solution of this equation is
= 2U(=p™ .
u(y,t)y=U Yy ¥e‘”’\2mt SiNAmY, (26)
L o= Al

whereim = 5, m=1,23....

Figure 3 shows a series of normalized velocity profiles at different times for this flo
The solid lines represent the analytical solution and the circles represent the CGDBE re:
obtained using 20 elements in tlgedirection. The numerical solutions are in excellent

agreement with the analytic counterparts.

= 1
0.9 J0.9
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FIG. 3. Normalized velocity profiles across the normalized channel width at different times.
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FIG. 4. The error as a function of time step.

For calculation of the temporal accuracy, 20, 40, and 80 uniform bilinear quadrilate
elements are used in tlyedirection. Both time step and Mach number are systematicall
reduced as the mesh size decreases with a constant CFL numbenapiia ratio. The
following average error measure is used.

Zi ’uianalytic . UiCGDBE’

€= N , (27)

whereN is the number of grid points in thedirection. The error is plotted against normal-
ized time stepAt = 1 for the largest time step) in Fig. 4. The CGDBE error curve follow:
the slope of the second-order scheme.

3.2. Lid-Driven Cavity Flow

Although the simulation of lid-driven cavity flow is a well-known benchmark problem
it is not a trivial one because of the difficulty in capturing flow phenomena near numeri
singularities at the top corners of the cavity. Therefore, it is desirable to refine the mesh 1
those singular points. The reasons for choosing lid-driven cavity flow as a test problem
to evaluate the spatial accuracy of the CGDBE at steady state and to demonstrate advar
of using nonuniform meshes.

3.2.1. Spatial accuracy evaluation at Re&100. The Reynolds number is defined as
Re= UL /v, whereU is the velocity of the top lid andl is the length of the top lid. The
solutions are obtained using Ma0.1, L = 1.0, andp = 1.0. The equilibrium distribution



346 LEE AND LIN

function is used to specify initial conditions. The convergence criterion is

Sl — inil‘
N
whereN denotes the total number of nodes, the supersorgenotes the time leve; is
any macroscopic variable, amds the error criterion set to.@e—7 in the present study.

In order to demonstrate the spatial accuracy of the CGDBE, calculations are perforr
on three systematically refined uniform meshes using 64, 128x 128, and 256« 256
rectangular elements (denoted by the subscript@d, andh, respectively). Since the ratio
of the mesh size on successive meshes is 2, the order of the sgheran,be estimated as
follows [36].

< €, (28)

$oh — Pan
In( P )
In2

This leads tgp = 2.1, confirming that the spatial accuracy of the CGDBE is of second ord
for the steady state solution.

p= (29)

3.2.2. Nonuniform mesh calculationUsing a 65x 65 nonuniform mesh, calculations
are performed for Re- 400, Re= 1000, Re= 3200, and Re= 5000. For all cases M&
0.1,L = 1.0, ando = 1.0. Figures 5—7 show contour plots of stream function, vorticity, an

FIG.5. Stream functions of the cavity flow: (a) Re400; (b) Re= 1000; (c) Re= 3200; (d) Re= 5000.
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FIG. 6. Vorticity contours of the cavity flow: (a) Re: 400; (b) Re= 1000; (c) Re= 3200; (d) Re= 5000.

pressure, respectively. The flow structure is in good agreement with previous results of (
et al.[37]. Comparison of the profiles of the horizontal velocity component in the vertic
symmetry plane is shown in Fig. 8. Table | lists the locations and values of stream funct
for the vortices. The results of Ghét al. [37] and Houet al. [29] are also displayed for
comparison. The results obtained from the nonuniform mesh indicate that the CGDBE
simulate finite Reynolds number flow problems with fewer grid points than the LBE metho
To emphasize this point, we compare the results using the CGDBE and the conventi
LBE method [38] at Re= 400 and Ma= 0.1 with the same number of grid points on
coarse meshes. Boundary and initial conditions for the CGDBE are given as above,
a 33x 33 nonuniform mesh is used. For the LBE method, the complete bounce-back
is applied at the stationary walls and the equilibrium boundary condition is applied to 1
top wall. A 33x 33 uniform mesh is used for the LBE method. Figures 9 and 10 show tl
velocity vectors and the pressure contours obtained from both methods. The CGDBE s¢
to generate better results than the LBE method. Due to the lack of grid points, the L
method yields oscillatory velocities near the upper left corner of the cavity in Fig. 9b, whi
can be removed by the composite LBE method [38]. The pressure field calculated fi
the LBE method exhibits a severe checkerboard pattern. Profiles of the horizontal velo
component in the vertical symmetry plane are shown in Fig. 11. Again, the LBE meth
yields less accurate profile as well as the spurious slip velocity near the walls caused by
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FIG. 7. Pressure contours of the cavity flow: (a) Ret00; (b) Re= 1000; (c) Re= 3200; (d) Re= 5000.

-— — =~ Re =5000

[e] Ghiaet al.

y/L

1o

- -0.5 0 0.5 1
/U (dimensionless x-velocity)

FIG. 8. Profiles of normalized velocity componemthrough the geometric center of the cavity at various
Reynolds numbers (profiles are shifted from the original location for comparison).
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TABLE |

349

Locations and Values of Maximum and Minimum Stream Function for Three Vortices
of the Lid-Driven Cavity Flows at Reynolds Numbers 400, 1000, 3200, 5000

Primary vortex

Lower left vortex

Lower right vortex

Re Case Ymax  X/Lia Y/l Ymin X/Lig  ¥/Liia Ymin X/Lig  ¥/Liia

400 Ghiaetal? 0.1139 0.5547 0.6055-1.42-5 0.0508 0.0469 —6.42—4 0.8906 0.1250
Houetal® 0.1121 0.5608 0.6078—-1.30e—5 0.0549 0.0510 —6.1%-4 0.8902 0.1255
present 0.1158 0.5516 0.6024-1.32-5 0.0529 0.0443 —6.82—-4 0.8799 0.1201

work®
1000 Ghisetal! 0.1179 0.5313 0.5625-2.31e—4 0.0859 0.0781 —1.7%-3 0.8594 0.1094
Houetal® 0.1178 0.5333 0.5647 —-2.22—-4 0.0902 0.0784 —1.6%-3 0.8667 0.1137
present 0.1204 0.5259 0.5771-2.26e—4 0.0830 0.0830 —1.76e—3 0.8658 0.1069

work®
3200 Ghisetal® 0.1204 0.5165 0.5469-9.78—-4 0.0859 0.1094 —3.14—-3 0.8125 0.0859
present 0.1206 0.5259 0.5516-1.16e—3 0.0830 0.1200 —3.02—-3 0.8349 0.0830

work®
5000 Ghieaetal® 0.1190 0.5117 0.5352-1.36e—3 0.0703 0.1367 —3.08e—3 0.8086 0.0742
Houetal®? 0.1214 0.5176 0.5373-1.3%-3 0.0784 0.1373 3.@3-3 0.8078 0.0745
present 0.1217 0.5259 0.5516-1.4%-3 0.0722 0.1342 —3.47e—-3 0.8181 0.0722

work®

@257 x 257 uniform mesh.
b 257 x 257 lattice nodes.
€65 x 65 nonuniform mesh.
4129 x 129 uniform mesh.

lower order boundary conditions, such as the complete bounce-back rule and the equilibi
boundary condition.

3.3. Steady Flow past a Circular Cylinder at Re20

We consider laminar steady flow past a circular cylinder on both structured and 1
structured meshes. The flow behind a circular cylinder remains symmetric up 0 Re

a b
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FIG. 9. \elocity vectors of the cavity flow at Re 400: (a) CGDBE; (b) LBE.
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FIG. 10. Pressure contours of the cavity flow at Re100: (a) CGDBE; (b) LBE.

[od

(Ruxoro) /v ~ 40, whereu,, is the free stream velocity andg is the cylinder radius. At a
Reynolds number of 20, a steady recirculation bubble is attached to the cylinder surfac
The structured mesh is generated in 6 cylindrical coordinates. The stretching formula
in ther -direction is given as [12]
1
r=ro+ (foo — ro){l - E arctanfl — n) tan(ﬂ)]}, (30)

wherer, is the domain radius; = (i — 1)/(n, — 1), wherei andn, are the grid index

LBE 7
Ghia et al.

y/L

-0.5 0 0.5 1
u/U (dimensionless x-velocity)

FIG.11. Profiles of normalized velocity componanthrough the geometric center of the cavity atRe00
and Ma= 0.1 with 33 x 33 grid points.
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FIG. 12. (a) Structured mesh with 129 64 grid points, (b) unstructured mesh with 2568 grid points.

and grid number in the-direction. For the present calculationg= 0.5,r,, = 50, 8! =
0.65, as used by Mei and Shyy [12]. Also, Ma0.1, and Re= 20. At the inlet and out-
flow boundaries, the uniform velocity = (u.., 0) is imposed as the boundary condition.
Intervals of 128 and 64 in the respectivandd directions are used. The unstructured mest
is composed of hybrid elements. Bilinear quadrilateral elements are used near the cyli
wall to capture the boundary layer, and bilinear triangular elements are used elsew
since quadrilateral elements are better suited to the boundary-layer type flow and trianc
elements are quite adaptable for mesh clustering and coarsening. The number of grid p
along the cylinder wall is 64 and the total numbers of grid points and elements are 2!
and 4276, respectively. Figure 12 shows structured and unstructured mesh setups. The
of the CPU time required per time step of the structured mesh calculation witk 629
(8256) grid points to that of the unstructured mesh calculation with 2568 grid points
about 4.7 on the HP 900®@85 workstation. The increase in the CPU time for structure
mesh calculation is due to the increase in the number of grid points and the humbe
neighbor nodes connected. Time steps are 0.004 for all cases and the steady-state sol
are reached after 200,000 iterations.

Table Il lists the quantitative geometrical parameters in the wake region. The lengtf
the wake regionL, is defined as the distance between the rearmost point of the cylinc
and the end of the wake. The separation arjlds the angle between the rearmost point
and the point where the separation occurs. Both parameters agree well with the re:
of previous studies. Note that the results of the unstructured mesh calculation agree
with those of the structured mesh calculation in spite of fewer grid points. Table llI lis
the quantitative comparisons for the drag coeffici€bp), and the stagnation pressure
coefficients at the front(,(,r)) and the end@,(0)) of the cylinder. The drag coefficient
is calculated as

1
Co=—— in;dr, 31
0= uzr b (31)

wheren; are the components of the outward normal vector on the cylinderWadlenotes
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TABLE Il
Comparison of Geometrical Parameters for the Flow
past a Circular Cylinder at Re = 20
Authors L/a Os
Tritton? (1959) 1.86 41.6
Dennis and Chartg1970) 1.88 43.7
Nieuwstadt and Kell@r(1973) 1.786 43.37
Fornberd (1980) 1.82 —
Mei and Shyy (1997) 1.804 42.1
He and Doolet (1997) 1.842 42.96
Present work 1.846 43.35
Present work 1.85 44.08

a Experiment.

® Numerical simulation of Navier—Stokes equations.

¢ FDLBM with 129 x 64 grid points.
41SLBE with 181x 241 grid points.

e Structured mesh with 129 64 grid points.

f Unstructured mesh with 2568 grid points.

the cylinder surface, and

ou; BUJ'

Sj = —pdij +pv (+ axi>

an

(32)

is the stress tensor. For the drag force in the streamwise direction, the subictgken

as one. The pressure coefficient is defined as

P— P
Co="1 1 -
3PUS

(33)

As shown in Table Ill, the drag and pressure coefficients are in good agreement with res

of previous studies.

TABLE 11l

Comparison of Dynamical Parameters for the Flow
past a Circular Cylinder at Re = 20

Authors Co Cp(m) —C,(0)
Dennis and Charig(1970) 2.045 1.269 0.589
Nieuwstadt and Kellér(1973) 2.053 1.274 0.582
Fornberg (1980) 2.000 1.28 0.54
He and Dooleh (1997) 2.152 1.233 0.567
Present work 2.030 1.256 0.593
Present work 1.998 1.248 0.530

@ Numerical simulation of Navier—Stokes equations.

b ISLBE with 181x 241 grid points.

¢ Structured mesh with 129 64 grid points.
4 Unstructured mesh with 2568 grid points.
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4. CONCLUSIONS

The characteristic Galerkin finite element method has been successfully applied to sol
the discrete Boltzmann equation. Due to the inherent geometrical flexibility of the fin
element method, flows in complex geometries can be easily simulated. In addition, the
of unstructured meshes increases the numerical accuracy while reducing the computat
cost. In order to circumvent the stability limit arising from the relaxation term, the predictc
corrector method is proposed.

Unsteady Couette flow, lid-driven cavity flow, and steady flow past a circular cylind
are chosen as test cases. Numerical results confirm the theoretically estimated nur
cal accuracy of the CGDBE. Good agreement of the results from the CGDBE with 1
analytical (if applicable), experimental, and previous numerical results indicates that
CGDBE extends the applicability of the traditional LBE method to flows in complex g
ometries.

APPENDIX

For a constant advection velocigy the one-dimensional pure advection equation fo
f (x, 1) can be written in the form

of of
E = ft = —e& = —efx (Al)
or
f()N((tm-l)» tn-~-l) - f(i(tn)s tn) =0. (A-2)

If we apply the local approximation Eq. (11) to Eq. (A.2), we obtain

AZ
0 — eatf) — At T2 ¢ (A3)

Equation (A.3) can be discretized using a Galerkin method. For a typical inageng
linear elements of equal sizex, we obtain the assembled finite element equation

*[(fn+l+4fn+l+ flTil) (fly+4f" 4+ 1)

(o]

eAt 2 At?
ZAX(fllll fin—l> 2AX A2 (fnl+2f + fl+l) (A4)

In order to determine the accuracy of the scheme, we will consider numerical represente
of the modified transport equation following [35]

ft+ef Zaetfxx‘i‘gt* = ¢&t, (A5)

whereag, is the transient equivalent numerical diffusiefijs the residual transient trunca-
tion error, and:; is the global transient truncation error.
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Taylor series expansion df around the time instarit= nAt and the grid point in the
x-coordinate is

f(x £ AX, t + At)
AX? At?
= f(X,t) £ Axf(x, t) + Atfi(x, t) + — fux (X, t) = AXAtf (X, t) + - fie(X, 1)

AX3 AX?At 2 At3
+ 5 fxxx(X, T) + — fext(X, t) £ free (X, ) + 5 fre (X, ) + -+ -

(A.6)

Using Eqg. (A.6) we obtain the general expression of the transient truncationsembr
Eq. (A.4) at the grid poinit and the time leveh

_ At 1f e2f At?
& = 2tt 2xx 6

1 e
fttt - AX2<6 fxxt + é fxxx) + O(At% AX4). (A.7)
Equation (A.7) can be rearranged by recursive application of the advection equations (/
ftt = 62 fxx, fxxt = _efXXXr f><tt = 62 fxx><7 fttt = _e3 fxxx' (A-S)

Then, Eq. (A.7) becomes

e e At? e e
e = —At (E fyx — > fxx) ~ 5 for + AX? (6 frxx — 5 fxxx) + O(At3, AxY

= O(At?, AXY). (A.9)

The transient equivalent numerical diffusiag;, becomes identically zero and the residual
transient truncation erros;, is O(At2, Ax*) on the regular, equally spaced mesh.
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